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An experimental laboratory study has been carried out to investigate the propagation
of an internal solitary wave of depression and its distortion by a bottom ridge in a
two-layer stratified fluid system. Wave profiles, density fields and velocity fields have
been measured at three reference locations, namely upstream, downstream and over
the ridge. Experiments have been performed with wave amplitudes in the range 0.2–
1.9 times the depth of the upper layer, and a ratio between the lower and the upper
layer in the range 3.0–8.5. The ridge slope was varied from 0.1 to 0.33 and the
maximum ridge height was two-thirds of the thicker fluid layer. Over the ridge, the
flow has been classified into: (i) cases when the bottom ridge has little influence on
the propagation and spatial structure of the internal solitary wave, (ii) cases where
the internal solitary wave is significantly distorted by the blocking effect of the ridge
(though no wave breaking occurs), and (iii) cases for which the internal solitary wave
is broken as it encounters and passes over the bottom ridge. A detailed description
of the processes leading to wave breaking is given. Breaking has been found to take
place when the fluid velocity in the lower layer exceeds 0.7 of a local nonlinear
wave speed, defined at the top of the ridge. The breaking condition is also expressed
in terms of the amplitude of the incident wave, the layer thickness ratio and the
relative height of the ridge. The wave breaking can be determined from the input
parameters of the experiment. The transmitted waves have been found to always
consist of a leading pulse (solitary wave) followed by a dispersive wavetrain. The
(solitary) wave amplitude is significantly reduced only when breaking takes place at
the ridge. Internal waves of mode two are generated in cases with strong breaking.

1. Introduction
Internal solitary waves that propagate along a density interface have been observed

at many locations in the stratified oceans (see, for example, the review articles
of Ostrovsky & Stepanyants 1989; Huthnance 1989), with the amplitudes of such
waves occasionally exceeding several tens of metres (Osborne, Burch & Scarlet 1978;
Osborne & Burch 1980; Sandstrom & Elliott 1984; Apel et al. 1985). As internal
solitary waves propagate in the ocean, they carry considerable momentum and energy,
resulting in significant transient hydrodynamic loading on any offshore structures,
undersea navigation vehicles and subsurface storage facilities that they may encounter.
At a given location, the passage of the waves results in vertical displacement of the
thermocline, with the possibility of significant vertical exchange of fluid and materials
as a result of wave-induced mixing.
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Owing to their practical importance and theoretical interest, internal solitary waves
propagating in a fluid of constant depth have been studied extensively over the past
decades, both theoretically (Keulegan 1953; Long 1956; Benjamin 1966; Grue et
al. 1997; Grue & Ostrovsky 2001) and experimentally (Koop & Butler 1981; Segur
& Hammack 1982; Kao, Pan & Renouard 1985; Michallet & Barthelémy 1998).
The experimental studies show that Korteweg–de Vries (KdV) theory provides a
valid description of solitary waves with small amplitude; more recently, Grue et al.
(1999) have modelled large-amplitude internal solitary waves in constant depth fluids
by means of fully nonlinear theory and have obtained good agreement with their
laboratory experiments.

Internal solitary waves moving over one-dimensional topography have been subject
to several investigations. Split-up of a single solitary wave in deep water into a number
of solitary waves at a shelf was investigated by means of the variable coefficient KdV
equation (Ono 1972; Johnson 1973). A disintegration of an incoming solitary wave
into a dispersive wave packet was noted by Djordjevic & Redekopp (1978). The
process of disintegration of an initial solitary wave of depression after the turning
point, i.e. the point where the pycnocline is half-way between the seabed and the sea
surface, and the appearance of new solitary waves of elevation, was further pursued
by Knickerbocker & Newell (1980), Helfrich, Melville & Miles (1984) and Malomed
& Shrira (1991). Grimshaw, Pelinovsky & Talipova (1998) gave a detailed numerical
study of the solitary wave transformation at a slope and change of polarity. In the
case of a short transition zone, they found no solitary wave after passage through
the turning point. If the transition was slow, however, their simulations showed that
new solitary waves were generated by the deformation of the leading wave and by a
wave of elevation appearing behind the solitary wave.

Fission of a barotropic or a baroclinic solitary wave incident on a step-like to-
pography, was studied by Kabbaj (1985) and Renouard, Seabra Santros & Zhang
(1987), whereas Kabbaj & Zhang (1988) described the fission of an internal solitary
wave passing over a sill, comparing the Djordjevic & Redekopp model and the Kab-
baj model. Whereas the former gave information only of the transmitted wave, the
latter also included a reflected wave. Transmission and reflection of internal solitary
waves of depression at a topography (thin layer above thick layer, and topography
in the thick layer) were studied further by Diebels, Schuster & Hutter (1994) and
Wessels & Hutter (1996). (Similar reflection and transmission are observed in our
experiments, although this is not the main focus here.) In the sets of experiments
with a solitary wave of elevation interacting with a bottom ridge (thick layer above
thin), a pronounced reflection wave was measured when the height of the topography
exceeded the thickness of the thin layer. A study of transmission and reflection of
solitary surface waves by a semicircular cylindrical obstacle in a one-layer fluid was
performed by Cooker et al. (1990).

Experiments on the shoaling processes of an internal solitary wave over a uniform
sloping bottom were carried out by Kao et al. (1985), who observed that sufficiently
high waves were able to break on a slope. Helfrich (1992) measured the conversion
of solitary waves into boluses. Michallet & Ivey (1999) examined the mixing process
and quantified the energy loss associated with internal solitary waves breaking over
a uniformly sloping bottom.

The main objective of the present study is the process of internal wave breaking
at a ridge. The velocity and density field perturbations associated with the passage
of an internal solitary wave over a bottom ridge are measured. The flow regimes
associated with the ridge encounter are classified. A general breaking criterion is
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Figure 1. Sketch of the experimental arrangement with Cam 1, Cam 2 and Cam 3 denoting the
positions of the cameras.

justified. Experiments are performed for wave amplitudes ranging from 0.2 to 1.9
times the upper layer thickness, and depth-ratios in the range 3.0 to 8.5. The ridge
slope is varied from 0.1 to 0.33 and the maximum ridge height is two-thirds of the
thicker fluid layer.

The sections of the paper include: the experimental arrangement (§ 2), the experi-
mental and theoretical description of the incoming solitary waves (§ 3), description of
the wave–ridge encounter and the wave breaking (§ 4), and wave transimission and
reflection (§§ 5 and 6). Conclusions are given in § 7.

2. Experimental arrangement
Figure 1 shows a schematic diagram of the wave tank and measurement positions.

An internal solitary wave of amplitude a is generated in a stably stratified fluid system
of total depth h1 + h2 and comprising lower (subscript 1) and upper (subscript 2)
layers of thickness h1,2 and density ρ1,2. The propagating wave moves with speed c
and amplitude a, and passes over a two-dimensional ridge of maximum height hr and
side slope s attached to the horizontal bottom surface of the system.

The behaviour of the incoming wave may be characterized in terms of h1/h2, a/h2

and c0, where the latter denotes the linear long-wave speed given by (in the Boussinesq
limit)

c0 =

√
g′h1h2

h1 + h2

, (2.1)

where g′ = g(ρ1 − ρ2)/ρ1 and g is the acceleration due to gravity (Grue et al. 1999).
The experiments were conducted in two different channels having overall dimensions

of 25.0 m×0.5 m×1.0 m and 6.4 m×0.4 m×0.6 m (length, width and depth, respectively).
In the long wave tank, experiments were performed in two different sections of either
15.3 m or 21.5 m length. Experiments were performed with a two-layer fluid with a
lower homogeneous layer of brine and a layer of fresh water slowly added on top
of the lower layer through a floating sponge arrangement. For practical reasons, the
values of ρ1 and ρ2 may vary somewhat from their prescribed values from run to
run. This does not influence the results as long as the linear long-wave speed, c0,
determined by (2.1), is used as the reference speed.
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Ridge width Ridge height
Wave tank (m) (m) Slope

Small 0.6 0.1 0.33
Small 1.0 0.1 0.20
Small 0.9 0.15 0.33
Large 6.2 0.31 0.10

Table 1. Different ridges used in the experiments.

Cam 1 Cam 2 Cam 3 Tank width Tank length ρ1 ρ2

Tank (m) (m) (m) (m) (m) g cm−3 g cm−3

Large 4.5 7.5 12.1 0.5 15.3, 21.5 1.022 . . . 0.998 . . .
Small 3.2 4.05 4.9 0.4 6.4 1.045–1.052 1.029–1.033

Table 2. Table of measurement positions.

2.1. Ridge

Experiments were performed both with and without a bottom ridge present in the
channel. A total of four different ridges were used and they were constructed out of
transparent plastic, but masked allow light to come through in the form of a light
sheet. The ridges were designed and machined with straight sides joined by an arc in
such a way that the slope sides aligned smoothly with the end points of the arc.

The ridge was carefully positioned at a distance sufficiently far from the gate that
the waves were steady before encountering it. In the small channel, the centre of the
ridge was positioned at a distance of 4.05 m from the endwall of the tank where
the wave was generated. In the large channel, the highest point of the ridge was
positioned at a distance of 7.83 m from the corresponding endwall. The ridges had
varying heights in the range from 0.1 m to 0.31 m with slopes from 0.1 to 0.33 (see
table 1).

2.2. Measurement positions

In all the experiments, measurements were performed at three different positions in the
wave tank. The first was used to document the incoming wave, the second monitored
the encounter with the ridge, while the third monitored the waves transmitted from
the ridge. The cameras were placed at the positions described in table 2, and all
the distances were measured from the endwall of the channel where the waves were
generated.

2.3. Wave generation

The wave generation mechanism follows the method described by, e.g. Grue et al.
(1999) and Kao et al. (1985). A movable gate was installed at one end of the channel
after the two-layer system was configured. Behind this gate a volume of water of
density ρ2 could be trapped. Hydrostatic balance was maintained by leaving open a
small gap beneath the gate. Upon release of the gate an internal wave was generated,
propagating along the interface in the initially undisturbed working section. By
carefully adjusting the position of the gate and the initial volume behind it, a single
solitary wave of prescribed amplitude a (see Grue et al. 1999) could be generated (see
figure 1). Experiments were performed covering a large range of model parameters
(see table 4). Table 3 lists 16 experiments selected out of a total of 56 performed.
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Experiment
number Tank h1 h2 a/h2 hr hl c0

swl2 1 0.45 0.15 0.55 0.305 6.1 0.1589
swl3 1 0.45 0.15 0.10 0.305 6.1 0.1609
swl4 1 0.45 0.15 0.40 0.305 6.1 0.1619
swl5 1 0.45 0.15 0.34 0.305 6.1 0.1609
swl6 1 0.54 0.15 0.64 0.305 6.1 0.1596
swl7 1 0.45 0.14 0.25 0.305 6.1 0.1542
swl8 1 0.45 0.10 0.59 0.305 6.1 0.1372
swl9 1 0.54 0.10 0.79 0.305 6.1 0.1388
swl10 1 0.54 0.10 0.38 0.305 6.1 0.1382
se10 2 0.241 0.059 1.03 0.10 1.0 0.0746
se45 2 0.305 0.075 0.79 0.15 0.932 0.0840
se47 2 0.241 0.059 0.96 0.15 0.932 0.0746
se48 2 0.241 0.059 0.54 0.15 0.932 0.0976
se49 2 0.241 0.059 0.96 0.15 0.932 0.0975
sw31 2 0.241 0.059 1.01 0.10 0.6 0.0746
sw32 2 0.2685 0.0315 1.81 0.10 0.6 0.0752

Table 3. Selected experiments performed in the large tank (1) and the small tank (2).

h1 + h2

∆ρ/ρ1 h1/h2 (cm) a/h2

0.0119–0.0237 3–8.5 30–77 0.2–1.9

Table 4. Ranges of parameters used in the experiments.

2.4. Particle tracking and particle image velocimetry

Particle tracking velocimetry (PTV) and particle image velocimetry (PIV) represent
powerful non-intrusive measurement techniques to quantify the velocities and the
underlying dynamics in a two-dimensional slice of the flow in the wave tank. In the
present study, both methods were applied to measure velocities.

In the PTV method, individual particles are traced in sequences of images. This
method is ideal when the local fluid acceleration is relatively small (which is true when
the wave amplitude is small or moderate and there is no or little interaction between
the wave and the ridge). In the PIV method, the spatial cross-correlation between
the position of groups of particles at two subsequent time instants is evaluated to
estimate the local fluid velocity. The motion due to the moderate waves was analysed
here using both PTV and PIV. For the cases where wave breaking occurred, it was
found that PIV was required for more precise measurements of the fluid motion.

Recordings were made in vertical sections of the wave tank by three monochrome
COHU 4912 CCD cameras with a resolution of 575× 560 pixels. In the large tank,
light sheets were generated by the use of powerful overhead projectors, while in the
small tank, light sheets were generated by the use of powerful arc lamps. The light
sheets were vertical and parallel to the side of the tank.

In the large tank, the illuminated sections were seeded with particles of Pliolite
VTAC with diameters in the range of 0.8–1 mm. The particles were treated in wetting
agent for some time to obtain an effective neutral buoyancy for the range of the
density profile. In the small tank, acrylic particles of type Optimage were used, having
a nominal diameter of 0.25 mm.
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The video recordings were digitized by a frame grabber card for subsequent
analysis. Typically 600–2000 particles were identified in each frame. In the PTV
method, particles were traced during five frames (equals to 0.2 s) using the DigImage
program developed and described by Dalziel (1992, 1993).

For PIV analysis, the software program MatPIV v1.4 (Sveen 1998) was used, as
developed in house. The code is an implementation of the method outlined in Willert
& Gharib (1991), but additionally employs interrogation window shifting as proposed
by Westerweel, Dabiri & Gharib (1997). The images were interrogated in three steps
where the first step was used to estimate the window shift with integer accuracy using
twice the desired interrogation window size. Subsequently, the interrogation regions
were halved before the second pass where the displacements were still measured with
integer accuracy using the estimates from the first pass as a guide. The third and
final pass then used the estimated displacements to shift the interrogation regions
in the second image. The displacements were found to subpixel accuracy using a
standard, three-point Gaussian fit of the correlation peak. Images were interrogated
using interrogation windows of 32×32 pixels. The final velocity vectors were validated
using a signal to noise ratio filter, where the signal to noise ratio was determined by the
highest peak in the correlation plane divided by the second highest peak. Normally,
it was required that this ratio be larger than 1.15, and vectors not satisfying this
threshold were rejected. Subsequently, a global filter was applied to remove vectors
that were larger than 3 times the standard deviation of all the vectors, followed by
a local median filter to effectively remove vectors that are larger than 1.7 times the
median value of the neighbouring points of a vector. Finally, erroneous vectors were
replaced using a nearest neighbour interpolation.

2.5. Density measurements

To monitor the density profiles before the experiments in the large tank, a conductivity
meter (Yokogawa SC12) was used. These measurements were complemented by the
use of a very accurate density meter (Mettler-Toledo DA-300M) which determines
the density with an accuracy of five significant digits. In the small tank, a computer-
controlled array of traversing, fast response microconductivity probes (see Head 1983)
was deployed. This array of probes was also used during wave propagation to capture
quasi-instantaneous vertical density profiles at different locations in the tank.

2.6. Interface tracking from PIV images

Each experiment usually resulted in the acquisition of video recordings at the three
different camera positions. At each position, a time sequence of images was then
available for PTV and PIV measurements. In these experiments, the tracer particles
used tend to coalesce in the interface region. This means that this area in the images
will have a higher mean intensity than the rest of the image. Here, a novel technique
is described to track this intensity in the images. The technique is applied to the
measurements of the transmitted wave at the third camera position in the long-wave
tank.

Typically, these recordings were more than 2 min long and images 0.52 s apart
are grabbed. From each image, A, 21 columns of data are extracted from the
centre area (A(246 < i < 266, j = 1–512)). Then a row-wise mean is performed so
that a single column of data representing the average image intensity in the centre
area is generated. This operation is performed on all the images available in the
sequence and the final result is a time trace of the wave as it passes the camera.
Following this, a polynomial filter is applied to smooth high-frequency noise and a
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one-dimensional cross-correlation of the individual columns of data is performed to
find the displacement of the intensity peak associated with the interface. This means
that each column in A is cross-correlated with its first column. The peak in each
correlation signal (one for each column) is then located together with the position
of the maximum gradient on both sides of the peak. The maximum gradient is used
as an indicator of the thickness of the high-intensity area which again relates to the
thickness of the interface in the experiments. In this way, the motion of the interface
can be monitored accurately. In the same manner as in ordinary PIV, the result is
then converted to so-called world-coordinates using a linear mapping function.

It is noted that the position of the maximum gradient of the correlation peak does
not necessarily give a direct measure of the thickness of the pycnocline. Rather it gives
a measure of both the accuracy with which the correlation peak can be determined,
and the vertical spread of particles close to or at the pycnocline. A more thorough
investigation of this method is needed, but is beyond the scope of this paper.

2.7. Experimental accuracy

The accuracy of the PTV method applied to internal wave experiments in a two-layer
fluid, with a constant density in each layer, has been analysed in earlier works (see
Grue et al. 1999, §§ 2.3 and 7) where it was found that the error in the measured
velocities relative to the linear long-wave speed was less than about 7–8% in all cases.
This analysis is also valid for the present experiments.

Comparison between the PTV and PIV measurements shows that the accuracy
of the two methods in practical aspects is approximately the same for the present
experiments. A more detailed analysis of the accuracy in PIV experiments may be
found in Raffel, Willert & Kompenhans (1998). This level of accuracy also applies to
the method for finding the interface, as it is based on the use of the cross-correlation
function.

3. The incident wave
The incoming waves were measured at the first camera position located 3.2 m from

the gate. Figure 2 shows measured horizontal velocity profiles for a few selected experi-
ments for non-dimensional amplitudes a/h2 = 0.25, 0.58 and 1.08 and corresponding
depth ratios h1/h2 = 3.21, 3.0 and 4.5. The profiles were measured at the trough of the
waves and comparison was made with the fully nonlinear theory of Grue et al. (1999).
For all three cases, a good correspondence was observed between the measurements
and the theory. All of the profiles were seen to have a weak dependence on the
vertical coordinate in each layer.

When internal waves are generated in the laboratory, it is important to consider the
influence of the different parameters involved. In the present cases where wave tanks
with different fluid depths have been used, the relative thickness of the interface, δ,
between the two fluids may play a more important role in reconciling results from each
geometry. In both tanks, this interface thickness will be of similar size owing to the
mechanism used to fill the tank. The quantity, δ, therefore played a more influential
role in the small tank where the layer thicknesses were smaller. Accordingly, in order to
distinguish between the experiments performed in the large and the small wave tanks,
the relative interface thickness, δ/h2 has been adopted as a comparison parameter.
Figures 3(a) and 3(c) show measurements of the horizontal velocity component, u2,
measured in the middle of the upper layer, at y = 1

2
h2, and normalized by c0 with the

latter given in (2.1). Figures 3(b) and 3(d ) show the corresponding measurements in
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Figure 2. Non-dimensional horizontal velocity at wave trough vs. non-dimensional depth.
�, a/h2 = 0.25, h1/h2 = 3.21; ×, a/h2 = 0.58, h1/h2 = 3.0; e, a/h2 = 1.08, h1/h2 = 4.5. Solid
lines were results from fully nonlinear theory.
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Figure 3. Non-dimensional horizontal velocity at wave trough vs. non-dimensional amplitude a/h2.
(a, b) Experiments in the large wave tank, (c, d ) small tank. (a, c) Velocity in the upper layer,
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the lower layer measured at the maximum displacement of the pycnocline, at y = −a.
The figures show all of the experiments contained in this paper and demonstrate the
accuracy in our measurements.

Figures 3(a) and 3(b) show plots of all the experiments performed in the long wave
tank. In this case the relative thickness of the pycnocline is estimated to be δ/h2 ∼
0.13–0.2. In the small channel this relative thickness is typically δ/h2 ∼ 0.27–0.34 and
amplitude estimates are somewhat less precise than for a thin pycnocline.

In general, a good agreement between the theory and the experiments is found
although some scatter in the data is present. The scatter appears to be slightly larger
for the experiments performed in the small channel and this finding is attributed
mainly to the fact that the relative thickness of the interface is larger in this case.

3.1. Wave profiles

To test the influence of the ridge on the upstream wave, two experiments were
performed in the small tank with identical initial conditions. The first experiment was
performed with a ridge present and the second without. The results for two waves
from two separate experiments with a/h2 = 0.31 (not shown here), confirm that the
difference between the two measured wave profiles is negligible at the first camera
position. Furthermore, the agreement with the theoretical prediction of a steady wave
is very good, apart from a small transient tail in the experiment.

4. The wave–ridge encounter
4.1. Weak and moderate wave–ridge encounters

The second camera monitors the encounter of waves with the bottom topography.
The camera was in all cases positioned so that the top of the ridge was within
or directly below the field of view. Experiments were performed for a wide range
of parameters, covering cases from practically no interaction to cases with strong
breaking. The waves are in all cases moving from left to right in the pictures.

When the amplitude of the incoming wave is sufficiently small compared with the
height of the ridge, the interaction is weak, as shown in figure 4(a). As the wave passes
the ridge, the velocity in the lower layer is increased owing to the decreased local
depth, but there is no breaking taking place and the wave shape is not significantly
distorted.

As the relative blocking effect exerted by the ridge is increased, the deformation of
the wave changes from weak to moderate (figure 4b). The velocity in the lower layer
is increased significantly as a result of the decreased local water depth. Separation
is observed to take place at the ridge but no significant three-dimensional motion is
observed after the encounter. The separation leads, in most cases, to the generation
of one or more vortices that propagate along the bottom and eventually dissipate
near the top of the ridge (details are given in § 4.4). Figure 5 shows the density
profile measured directly above the ridge before and during the passing of a wave
in an experiment where no breaking is observed (experiment se10, see table 3). The
thickness of the interface is increased, but no mixing or overturning takes place, as
the wave passes the ridge.

4.2. The breaking events

4.2.1. Wide ridge

As the wave–ridge encounter increases in strength, wave breaking is observed
(figures 4c, 6 and 7). Wave breaking at the wide ridge is discussed first. Figure 6
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t = 0 t =1 t = 4

Figure 4. Time sequences of shadowgraph showing (a) weak encounter (a/h2 = 0.3); (b) moderate
encounter in which the wave is distorted significantly, though no breaking (a/h2 = 0.42) and
(c) strong encounter with wave breaking (a/h2 = 0.98). In all cases, h1/h2 = 4.1, hr/h2 = 2.54 (short
tank).

illustrates the breaking process with six images taken at time t = t0, t0 +5 s, t0 +6.96 s,
t0 + 7.96 s, t0 + 10 s and t0 + 14 s. In figure 6(a) the interface is observed to be aligned
almost parallel to the side slope of the ridge. In the frame in figure 6(b), taken 5 s
later, the rear part of the wave has reached the field of view and the steepest part
of the interface (for −2.5 < x/h2 < −1.5) is almost perpendicular to the slope of the
ridge. It is observed that the interface extends deeper than half of the local water
column. The incident depression wave is transferred into a leading depression and
a subsequent wave of elevation (figure 6b–d ). This is similar to the transformation
process of interfacial solitary waves of depression travelling up a sloping beach,
beyond the turning point (the point where the pycnocline is halfway between the
sea bed and the sea surface). This was, in the weakly nonlinear and non-breaking
cases, described in Knickerbocker & Newell (1980), Helfrich et al. (1984), Malomed
& Shrira (1991) and Grimshaw et al. (1998). The process here is more pronounced
than what can be modelled by the long-wave equations, however. In figure 6(b), it
can be seen that the interface at the rear of the wave is thicker and that the mixing of
salt and fresh water creates a foglike small area at the interface, indicating breaking
flows. In figure 6(c) the wave is weakly overturning.

A second breaking event occurs where the tail of the wave has become so steep
that the pycnocline collapses locally. The elevation, behind the leading pulse, is then
almost at the top of the ridge (figure 6e). Such a breaking behind the wave of
elevation is not observed in the weak and moderate wave–ridge encounters. Neither
is it observed for a narrow ridge. We cannot exclude the possibility that in this case
the local vertical acceleration is comparable to the acceleration due to gravity, g,
i.e. a Rayleigh–Taylor instability. Rough acceleration estimates indicate a value of
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Figure 5. Density profile vs. non-dimensional depth measured at the initial state and through the
wave as the wave passes the ridge. a/h2 = 1.033, h1/h2 = 4.1, hr/h2 = 1.69 for the short tank. The
dot-connected line shows the initial density profile, whereas the triangle-connected line shows the
profile near the maximum excursion of the interface as the wave is passing the ridge. The wave is
distorted by the ridge but no breaking is observed.

about 0.5 g, however. The elevation behind the leading pulse can also be explained
by a transition between the almost critical flow occurring beneath the wave trough,
and the flow that is far from critical in the rear part of the wave, with a higher
excursion of the pycnocline. A similar behaviour is observed in free surface flows.
An example is the interaction between a solitary wave of elevation and a submerged
obstacle (Cooker et al. 1990, § 3.3). Another example is a thin hydrofoil moving with
speed U and submergence h below the free surface in otherwise calm water. A strong
interaction between the foil and the free surface takes place when U/

√
gh is equal to

unity (Hough & Moran 1969; Walree 1999).
For increasingly stronger interaction, the local flow above the ridge crest becomes

supercritical. The flow forming the wave of elevation then develops into a hydraulic
jump. The position of the latter appears earlier and earlier on the slope, for increasing
strength of the wave–ridge encounter.

Table 5 summarizes the observations from 10 different experiments, where the 5
first are experiments with a wide ridge and the final 5 with a narrow one.

4.2.2. Narrow ridges

In the experiments where the narrower ridges were used, the wave breaking is more
rapid and always in the form of overturning. The breaking in the form of a collapse
was never observed in these cases. Figure 7 shows four images from the experiment
labelled se49, where |ũ1|/c̃0 ∼ 1.19 (c̃0 and ũ1 are defined in § 4.5). Figure 7(a) shows
the wave just before overturning, as it enters the field of view. In figure 7(b), the
overturning has started, and in figure 7(c) a large plunging jet is seen. Figure 7(d )
shows the wave 3.6 s after the first image, and now eddies can be seen on the interface
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Figure 6. Image sequences showing a wave breaking event for the wide ridge. (a) t = t0,
(b) t = t0 + 5 s, (c) t = t0 + 6.96 s, (d ) t = t0 + 7.96 s, (e) t = t0 + 10 s and ( f ) t = t0 + 14 s.
The images are taken from an experiment performed in the large wave tank with h1/h2 = 4.5,
hr/h2 = 3.1 and a/h2 = 0.59. Experiment swl8.
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Collapsea+ h2

h1 + h2 − hrExp |ũ1|/c̃0 Overturning at rear Comment

swl2 1.0 0.79 No Yes Spilling breaker, powerful mixing
swl4 0.84 0.71 No Yes Weak, spilling breaker
swl5 0.71 0.68 No No Weak, spilling breaker
swl6 0.88 0.64 No Yes Weak, spilling breaker
swl8 1.15 0.65 Yes Yes Strong breaking, powerful mixing

se47 1.49 0.78 Yes No Strong breaking
se48 1.0 0.64 Yes No Strong breaking
se49 1.19 0.77 Yes No Strong breaking
sw31 0.94 0.59 Yes No Strong breaking
sw32 0.67 0.44 Yes No Weaker breaking

Table 5. Table of different observations of breaking. All experiments labelled swl . . . are with a
wide ridge. c̃0 defined in equation (4.4).
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y
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(c) (d)

x/h2 x/h2

Figure 7. Image sequences showing a wave-breaking event for the narrow ridge. (a) t = t0,
(b) t = t0 + 1.2 s, (c) t = t0 + 2 s, (d ) t = t0 + 3.6 s. The images are taken from an experiment
performed in the short wave tank with h1/h2 = 4.1, hr/h2 = 2.54 and a/h2 = 0.96. Experiment se49.

between the jet and the initial interface. Three eddies are identified in the image.
The density probe can also be seen as a vertical line at the top and centre of all the
images.

4.3. Measurements of overturning

In the experiments using the narrow ridges, the wave breaking is dominated by
overturning. The degree of overturning may be quantified conveniently by processing
the sequential density profile measurements (figure 8, experiment se49 ) in terms of the
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Figure 8. Density variations due to breaking measured in the experiment se49 with a/h2 = 0.96,
h1/h2 = 4.1 and hr/h2 = 2.54. (b) Normalized buoyancy anomaly. Line-connected squares: initial
density profile. Line-connected triangles: Density profile taken during breaking.

instantaneous buoyancy anomaly profile g∗(yi) defined (De Silva, Imberger & Ivey
1997) here as:

g∗(yi) =
g

ρm
[ρ(yi)− T (yi)], (4.1)

where ρ(yi) is the measured instantaneous density profile over the ridge crest, T (yi) is
the corresponding Thorpe-ordered density profile and ρm is the mean density. T (yi)
is found by monotonizing ρ(yi) so that the sequence has minimum potential energy.

The result for one experiment is shown in figure 8(b) where the buoyancy anomaly
g∗ is normalized by g′ = g∆ρ/ρ (initially unperturbed reduced gravitational accel-
eration). The initial profile is seen to have a buoyancy anomaly of zero. For the
instantaneous profile measured at the wave crest, the variations visible in figure 8(a)
give rise to a buoyancy anomaly −0.25 < g∗/g′ < 0.2, indicating the amount of over-
turning present. The vertical extent of the overturning region in this case is estimated
to be about 0.6h2. For weak wave-breaking cases, mixing and overturning events
are also observed to take place, though, as expected, the events are not as vigor-
ous as those observed in strong wave-breaking cases and the values of g∗/g′ are
correspondingly lower.

4.4. Generation of vortices

Vortices were observed to be generated at the weather side of the ridge as a wave
propagated over it for all events where moderate or strong interaction occurred, but
the position at which the vortices were produced and their development varied as the
relative amplitude increased. Depending on the velocities induced by the wave, there
may be more than one vortex generated owing to the flow separation.

The vortices are generated as a consequence of flow separation owing to an adverse
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pressure gradient on the ridge bed as the wave tail rises steeply. The separation starts
with a surge-like flow upwards along the bottom and develops into a flow containing
one or more vortices. Particles located on the bottom topography are observed to be
swept off and mixed into the entire column of the lower layer.

In the cases where moderate interaction was observed between the wave and the
ridge, the vortex or vortices generated moved up along the ridge crest and eventually
dissipated near the top of the ridge. In the experiment labelled swl9 (see table 3), two
vortices were observed to be generated, each having a diameter of about dv ∼ 0.5h2.
The lifespan of these vortices may be estimated to be of the order of tc0/a ∼ 25, with
a denoting the incoming amplitude and c0 the linear long-wave speed without the
ridge present. The dissipation of these relatively long-lived vortices may be ascribed
to the weak viscous effect that attenuates their vorticity.

In the cases where strong breaking was observed, the vortex generation and eventual
breakdown was more powerful. Looking to figure 6(b), initial separation is seen to
be taking place. At x/h2 ∼ −2.5, y/h2 ∼ −1.6, the image shows a vortex being shed.
This vortex eventually moves up along the ridge (see figure 6d ) and it is paired with
a larger one at x/h2 ∼ −1.5, y/h2 ∼ −1. This larger vortex is created at a later time
than the first and at a position further up the ridge slope. Looking to figure 6(e),
the flow which initially separated from the ridge has developed and now extends in
a larger region with strong mixing. The motion in this region seems to break down
into small-scale motion. Visual observations confirm that the motion in this case is
three-dimensional. In this image, the point where the separation begins has moved to
the top of the ridge at x/h2 ∼ 1.

The two vortices mentioned above, have diameters dv ∼ 0.2h2 and dv ∼ h2, re-
spectively. The smaller of the two was generated first and disappeared after about
tc0/a ∼ 7 into the larger vortex. The latter had an estimated time span of about
tc0/a ∼ 9. As the wave eventually breaks, the local flow structure becomes turbulent
and leads to breakdown of the vortex. The structure of the vortex is destroyed in situ
by turbulence approximately where it is generated.

The experiments with breaking have revealed that the subsequent mixing takes
place throughout the whole column of the lower layer. In extreme cases, particles
have been observed to move across the interface.

4.5. Quantitative analysis of the wave breaking at camera 2

To quantify the degree of interaction, the horizontal velocities, ucam2
1 (x, y, t) and

ucam2
2 (x, y, t) are measured, in the lower and upper layer, respectively, above the top of

the ridge. Subsequently a mean is taken over a small area in both layers by defining

uc2
1 (t) =

1

0.04h2

∫ hr+0.2h2

hr

∫ x0+0.1h2

x0−0.1h2

ucam2
1 (x, y, t) dx dy, (4.2)

uc2
2 (t) =

1

0.1h2

∫ y0+0.9h2

y0+0.4h2

∫ x0+0.1h2

x0−0.1h2

ucam2
2 (x, y, t) dx dy, (4.3)

where x0 denotes the position of the crest of the ridge and y0 the position of the undis-
turbed interface. The integration area is restricted owing to uncertain measurements
close the free surface and the pycnocline. The results from two different experiments
are plotted in figure 9, where the data have been non-dimensionalized by c̃0 (defined
below).

To examine more closely the breaking process, it is convenient to introduce the
minimum velocity in the lower layer, ũ1(t = t0) = min(uc2

1 (t)) and the maximum
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Figure 10. Definition sketch for the measurements at the second camera position.

velocity in the upper layer, ũ2(t = t0) = max(uc2
2 (t)). Figure 9(a) shows an experiment

where the interaction is characterized as weak. In this case, |ũ1|/c̃0 ∼ 0.21. Turning to
figure 9(b) where severe breaking is observed, the corresponding value is |ũ1|/c̃0 ∼ 1.16.

It is noted that the measurement in figure 9(b) is not affected by the wave breaking
until tc̃0/h2 ∼ 15, implying that the breaking plays little part in the measurements of
the minimum values of ũ1. Other experiments (not shown here) verify that the largest
absolute values are found before the effects of the breaking reach the measurement
region. In the rest of the paper, the values of |ũ1|/c̃0 will always refer to measurements
at camera 2.

The measured local velocities, ũ1 and ũ2, may now be used to estimate the excursion
of the interface as a function of time. Figure 10 defines the local properties above
the ridge crest. From continuity, |ũ2|h̃2

∼= |ũ1|h̃1 directly above the crest of the ridge,

where h̃1 + h̃2 = h1 + h2 − hr (hr the height of the ridge). The values of h̃1 and h̃2 can
subsequently be used to define

c̃0 =

√
g′h̃1h̃2

h̃1 + h̃2

, (4.4)

with g′ = g∆ρ/ρ. The wave speed c̃0 can be interpreted as the local (nonlinear)
shallow-water speed at the top of the ridge.

Figure 11 shows a plot of the value of the local parameter, |ũ1|/c̃0, versus the
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Figure 11. Non-dimensional amplitude of the incident wave versus horizontal, non-dimensional
velocity above the ridge crest. Breaking is observed when the velocity in lower layer is greater than
70% of the value of the local linear long-wave speed, i.e. |ũ1|/c̃0 > 0.70. •, Experiments where weak
interaction is observed; ◦, experiments where moderate interaction is observed; �, experiments
where the waves break as they pass the ridge.

amplitude of the incoming wave, (a+h2)/(h1 +h2−hr). With the previous classification
of the interaction in mind, the plot in the figure can be used to classify the strength
of the wave–ridge encounters as:

(i) For |ũ1|/c̃0 less than 0.4–0.5, the propagation of the solitary waves is not
significantly altered by the presence of the ridge. Any attenuation of the wave
amplitude is mainly ascribed to viscous effects.

(ii) For 0.4–0.5 < |ũ1|/c̃0 < 0.7, the effect on the wave due to the ridge causes
steepening of the back of the wave and significant distortion above the ridge, though
without breaking. A mild reduction of the wave amplitude and associated velocity
magnitude downstream of the ridge is in evidence. Furthermore, separation effects
take place at the ridge surface owing to the blockage-induced increased velocity within
the lower layer.

(iii) For |ũ1|/c̃0 larger than about 0.7, the ridge has a significant impact on the wave,
resulting in steepening and eventual breaking of the wave. Both the magnitude of the
velocity and amplitude of the leading solitary wave are significantly reduced compared
with the no-ridge case. For strong wave-breaking events, mixing and overturning take
place. For all cases with |ũ1|/c̃0 > 0.6, vortices are observed to be generated at the
up-slope side of the ridge as a wave propagates over it, as a result of flow separation.

The results above illustrate that wave breaking occurs when the particle velocity
becomes comparable to the local nonlinear wave speed. The breaking occurs in the
form of overturning of the wave. The overturning observed for |ũ1|/c̃0 > 0.7 (and
not only for |ũ1|/c̃0 > 1) illustrates a transbreaking regime of the local process. The
breaking observed here cannot be explained by shear instability (see § 4.7).

4.6. Breaking criterion expressed in terms of the incident wave

It is tempting to relate the occurrence of breaking at the ridge, to the parameters of
the incident wave and the ridge. As noted above, |ũ1|h1

∼= |ũ2|h̃2. It is furthermore
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Figure 12. Volume flux of incoming wave, u2(h2 + a)/(c0h2), versus wave passing ridge,

|ũ1|h̃1/(c0h2). Symbols as in figure 11.

noted that

|ũ1|h̃1 = |ũ2|h̃2 ∼ u2(a+ h2), (4.5)

where u2 and a denote the fluid velocity in the upper layer and the amplitude of
the incident wave, respectively. This is confirmed by the plot in figure 12, roughly
speaking. In the next step, the maximal thickness of the upper layer above the top
of the ridge, h̃2, is estimated by h̄2 = a + h2. The corresponding thickness of the
lower layer is h̄1 = h1 − hr − a. An estimate of c̃0 is further given by c̄0 where
c̄0 = (g′h̄1h̄2/(h1 + h2 − hr))1/2. Figure 13 plots c̃0 versus c̄0, showing that the two
quantities are almost equal for all measurements. It is then possible to estimate
max |ũ1| by u2(a+ h2)/h̄1 and c̃0 by c̄0. The breaking criterion |ũ1|/c̃0 & 0.7 may then
be indicated by the parameters of the incoming wave and the ridge by

u2

c0

> f, (4.6)

where u2 denotes the maximal fluid velocity in the upper layer, owing to the incoming
wave, c0 is given by (2.1) and f by

f

(
a

h2

,
hr

h2

,
h2

h1

)
= 0.7

c̄0

c0

h̄1

a+ h2

= 0.7
(1 + (h2/h1))

1/2

(1 + (a/h2))1/2

((h1/h2)− (hr/h2)− (a/h2))
3/2

((h1/h2)− (hr/h2) + 1)1/2
. (4.7)

Values of u2/c0 may be taken from figure 3. Figure 14 supports the result that
breaking occurs for u2/fc0 larger than 1. One of the cases with breaking stands out
as an outlier, however. This is an experiment with h1 = 0.268 m and h2 = 0.032 m
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Figure 14. Non-dimensional horizontal velocities in the upper layer of the incoming wave vs. the
non-dimensional amplitude. Symbols as in figure 11.

performed in the small wave tank where the relative interface thickness was of the
same order of magnitude as the thickness of the upper layer. The velocity-field at
the crest of the wave (not shown here) resembles the shape of that in a system with
a linearly stratified upper layer and a lower thicker layer with constant density (see
Grue et al. 2000). The case in figure 14 not fitting with (4.6)–(4.7) is thus ascribed to
an uncertain determination of the incident wave.

The criterion (4.6)–(4.7) ties the occurrence of breaking to the properties of the
incoming wave, the depth ratio between the fluid layers and the height of the ridge.
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Experiment ∂u/∂y|x=0 ∂u/∂y|x=−3

number Tank Observation (s−1) (s−1) |ũ1|/c̃0 Ri|x=0 Ri|x/h2=−3

swl9 1 Moderate interaction 3.9 3.7 0.7 1.0 1.1
se45 2 Breaking (weak) 4.3 3.6 0.7 0.4 0.6
swl8 1 Breaking (strong) 4.4 4.0 1.2 0.8 0.9

Table 6. Table showing the Richardson number in three selected experiments.

4.7. The role of shear instability

Using the measured velocity fields, it is tempting to estimate the local Richardson
number, Ri = N2/(∂u/∂y)2, as a function of time for a fixed position above the ridge
crest. Here N is the Brunt–Väisälä frequency, and u the horizontal velocity above the
ridge. This has been done for three selected experiments where |ũ1|/c̃0 ranges from
0.68 to 1.157. The maximal ∂u/∂y and minimal local Richardson numbers are shown
in table 6. Ri is always significantly larger than 0.25, indicating that shear instability
does not take place above the ridge crest in these experiments. An example can be
seen in figure 6. In all three cases, a pycnocline thickness of 1.5 cm was used in the
estimates of N.

It cannot be excluded that the shear instability contributes considerably to the
breaking in the strong breaking cases. Indeed, it is observed that shear instability
occurs in some of the experiments. This is true only in very strong breaking cases
and then at an early stage of the wave–ridge encounter.

Additionally, in one of the experiments (see figure 7), shear instability was observed
after the wave had broken in the form of a plunging jet. Billows were formed on an
interface between the lower layer and the jet.

5. The transmitted wave
5.1. The leading pulse

A few experiments were conducted in the long wave tank with the purpose of mea-
suring the transmitted wave over a relatively long period of time. The third camera
was positioned between the ridge and the endwall of the channel, at 12.3 m, in the
long tank, and at 4.9 m in the short tank, measured from the end of the tank where
the waves were generated. Measurements of the motion from two selected experi-
ments, where the interaction is characterized as moderate and strong, respectively, are
presented. Data from other runs are available but not included here.

The transmitted waves were observed to consist of a leading solitary wavelike
pulse travelling ahead of a train of smaller waves. In the cases where the interaction
was characterized as weak (not shown here), the shape of the leading pulse closely
resembled the numerical prediction of a solitary wave of permanent form and speed.
In the case of moderate interaction, the overall shape of the initial pulse is broader
than the incident solitary wave and the tail has not separated from the train that
follows. In figure 15 (swl9, |ũ1|/c̃0 = 0.72), where the shape of the leading pulse is
plotted and compared with a theoretical prediction for a/h2 = 0.53, the leading part
of the wave is seen to show very good agreement with a theoretical solitary wave
profile. The tail of the wave, however, does not fit well with an ideal wave, which
is due to the fact that the pulse has, at the time of measurement, not yet developed
into a solitary wave. The amplitude of the leading pulse is observed to be about 30%
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Figure 15. Interface, moderate interaction. Comparison of the leading pulse of the transmitted
wave with a theoretical prediction for a/h2 = 0.53. ——, Theory; •, measurements; ——, estimated
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Figure 16. Interface, strong interaction. Comparison of the leading pulse of the transmitted wave
with a theoretical prediction for a/h2 = 0.35. Symbols are as for figure 15. Experiment swl8.

smaller than the amplitude of the incident wave. In the case with strong wave–ridge
encounter, shown in figure 16, the front of the pulse exhibits good agreement with a
theoretical profile for a/h2 = 0.35, but the tail shows a significant deviation from this
prediction. The amplitude of the leading pulse is observed to be about 41% smaller
than the amplitude of the incident wave.

5.2. The sequence of transient waves

In all the experiments, a sequence of transient waves of small amplitude is generated
downstream of the ridge, and these waves subsequently move following the leading
pulse. Using the dispersion relation ω2 = g′k[coth(kh2) + coth(kh1)]

−1, an average
wavenumber, k, may be calculated from the sequences by first estimating an average
period in the wave sequence. In the experiments where the wave–ridge encounter was
weak (results not shown), the sequence of waves travelling after the leading pulse
consist of waves of fairly uniform amplitudes and frequencies. The wave sequence in
figure 15 is taken from an experiment where the wave–ridge encounter is characterized
as moderate. It has excursions varying from ηmin/h2 ∼ −0.06 to ηmax/h2 ∼ 0.11. In
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Figure 17. Horizontal velocity profile vs. non-dimensional depth. Internal wave of mode 2.

this case ω̄ = 2π/(10.6h2/c0) = 0.823 s−1, k = 7.6 m−1 and ηmaxk = 0.0645 are
estimated. In another experiment (see figure 16), |ũ1|/c̃0 ∼ 1.16 at the ridge, and
strong breaking and mixing is observed. The waves in the sequence have maximal
excursions between ηmin/h2 ∼ −0.11 and ηmax/h2 ∼ 0.11. The average frequency
may be estimated as ω̄ = 2π/(9.4h2/c0) = 0.917 s−1. The average wavenumber is
k = 8.82 m−1 and ηmaxk = 0.0971. The estimated ω̄ are much smaller than the Brunt–
Väisälä frequency, which is about 4–5 s−1, for the present experiments. Furthermore,
it can be seen that the wavelengths are much shorter than the width of the ridge.

5.3. Generation of internal waves of mode 2

In the experiment depicted in figure 16, an internal wave of mode two has been
generated at the ridge, with excursions into both layers, and is observed at th2/c0 ∼
162. This wave is generated as a result of breaking and is seen to propagate along
the interface with excursions extending from y/h2 ∼ 0.1 to y/h2 ∼ −0.2, with
∆h/h2 ∼ 0.15 and ∆h being the thickness of the interface. Note that the measurements
of interface motion do not capture this amplitude fully. Figure 17 shows the velocity
profile measured, using PIV, through the crest of this mode-two wave. The maximum
horizontal velocity measured is umax/c0 = 0.082, which is about 30% of the maximum
velocity at the crest of the leading pulse.

5.4. Wave-amplitude reduction

A wave-amplitude reduction is caused by a combination of viscous effects and
processes associated with the encounter between the wave and the bottom topography.
A convenient measure of the integrated wave-amplitude reduction for the present
geometries is provided by the wave-amplitude difference (acam1 − acam3) between
camera 1 and camera 3, normalized by the amplitude acam1 at the first camera and
scaled by the non-dimensional distance between the cameras. A non-dimensional
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Figure 18. Amplitude reduction between the first and the third camera position. +, Measurements
without a ridge present; ∗, measurements with a ridge present and where weak interaction is
observed; e, experiments with moderate interaction; �, experiments where wave breaking was
observed at the second camera position.

amplitude reduction or damping coefficient may thus be defined as

â =
(acam1 − acam3)/acam1

Lc/h2

, (5.1)

with Lc denoting the distance from the first to the third camera.
When there is no ridge present in the wave tank, this quantity gives a measure

of the damping that the internal waves undergo during propagation. In this case, â
is termed by â0. In the small tank, the associated damping coefficient â0, estimated
from measurements at the first and third cameras are calculated to be 4.8% per
metre, a value that agrees well with the results of Kao et al. (1985). This results in
â0 = 0.048h2. In the large wave channel the attenuation can be estimated using the
results from Grue et al. (1999). Their data indicate an attenuation of about 1.3% per
metre, giving â0 = 0.013h2.

The properties of â may now be investigated. The results for all experiments herein
are shown in figure 18. The data for â have been scaled with the appropriate â0 so
that a value of 1 is equal to the damping that an internal wave undergoes when there
is no ridge in the tank.

For the waves in the |ũ1|/c̃0 < 0.4–0.5 encounters, the ridge has no significant effect
on the wave, and the reduction of the wave amplitude shows values that do not
differ significantly from those without the ridge present. There is a sharp increase
of the (leading) wave-amplitude reduction, however, when the blockage parameter
(a1 + h2)/(h1 + h2− hr) is larger than about 0.5–0.55. This coincides with the waves in
the 0.5 < |ũ1|/c̃0 < 0.7 regime where the ridge applies moderate modification to the
wave. For values of (a1 + h2)/(h1 + h2 − hr) larger than about 0.55, the results show
that the interaction with the ridge has significant impact on the amplitude reduction
and that wave breaking occurs at the ridge. This also coincides with the experiments
where breaking is observed and |ũ1|/c̃0 > 0.7.
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Figure 19. Reflected wave (a/h2 ∼ 0.11) for experiment se49, where strong breaking occurs. (a) The
time trace at x/h2 = −2.1. (b) x/h2 = 0. (c) x/h2 = 3.5. Solid arrows indicate position of reflected
wave of mode 1, whereas dashed arrows indicate position of small mode 2 wave.

For all values of â/â0 > 2.5, it is observed that the wave breaks at the ridge. This
also implies that such a strong amplitude reduction of internal solitary waves can only
be caused by breaking effects due to interaction with bottom topography. However,
the authors are not aware of any in situ measurements of the amplitude damping
and reduction of internal solitary waves for comparison with the above results.

6. Reflection, energy budgets and interaction at the ridge
6.1. Reflected waves

The wave–ridge encounter produces a reflected wave travelling from the ridge towards
the first camera position. The data show evidence of solitary wave reflection for cases
in which the topographic blockage is sufficiently great to effect significant distortions
to the incoming wave. Figure 19 shows measurements at the first camera position for
case se49. In this case, strong breaking was observed at the ridge. The vertical arrows
in the figure indicate the position of the reflected waves. The solid arrows indicate the
position of a mode 1 wave of amplitude a/h2 ∼ 0.11. A wave of mode 2 is observed
propagating from the ridge back past the first camera position. In the cases with
strong interaction, the amplitude of the reflected waves are estimated to be between
10% and 15% of that of the incident waves. This implies that the total energy in
the reflected wave is about 1–2% of that of the incident wave. For cases where the
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Energy in
incident wave

Experiment cam1

Energy in
transmitted Energy in

leading wave wave train

T + V

ρ1g′h3
2

T + V

ρ1g′h3
2number 10% reduced Loss %

swl7 0.92 0.66 0.03 25%
swl9 8.06 4.52 0.3 40%
swl8 4.41 2.03 0.56 41%

Table 7. Energy.

topographic effect was weak (low ridge, small-amplitude waves) no reflected waves
were detected.

Diebels et al. (1994) have studied transmission and reflection of internal solitary
wave at a topography. They considered two cases, the first in which a thick layer was
above a thin layer, with topography in the latter. In this case a pronounced reflection
wave was measured when the height of the topography exceeded the thickness of
the thin layer. The incoming waves were solitary waves of elevation. In the second
case, discussed in their § 4, they used a thin layer above a thick layer. Incoming
solitary waves of depression were incident upon a bottom topography in the lower
layer. Only very small reflection waves were observed (their figures 11–13). The
experimental results in Diebels et al. (1994) and Wessels & Hutter (1996) correspond.
The observations presented herein, of reflection waves of relatively small amplitude,
for a thin layer above a thick, and with the topography in the thicker (lower) layer,
correspond to the observations in these mentioned papers.

6.2. Energy budgets

It may be of interest to consider the energy budget for a few selected experiments
performed in the long wave tank. The kinetic and potential energy in the solitons are
computed with the fully nonlinear method (Grue et al. 1999; Rus̊as 2001), given the
amplitude of the wave. The energy of the incoming soliton is compared with that
of the transmitted leading pulse plus transient tail. The reduction of the amplitude
owing to dissipation, of the incident wave, is accounted for (1.3% per metre). The
mechanical energy in the wave sequence following the leading pulse is estimated by
(T + V ) ∼= 2V = 1/2ρ1g

′a2λn, where a denotes the amplitude, λ = 2π/k and n is the
number of waves in the sequence. The results are shown in table 7. The column on
the right-hand side of the table indicates a loss due to the encounter between the
incident wave and the ridge.

6.3. Trapped waves over the ridge

No evidence of a trapped wave was detected for any of the cases investigated. For the
cases of strong wave–ridge encounter, the motion above the ridge is dominated by
wave breaking. The presence of any trapped wave in these circumstances is therefore
likely to be hidden by the more dramatic manifestations of the above breaking
(overturning and mixing, followed by the local formation of laterally intruding flows).

6.4. Resonance over the ridge

When the width of the ridge matches that of the incident wave, one might be
inclined to expect a resonance over the ridge. To investigate this, two laboratory
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experiments (not shown here) were carried out for cases (i) in which the topographic
blockage was sufficiently weak for breaking not to occur, according to the ridge-height
breaking criterion, but for which (ii) the width matched/did not match, respectively,
the wavelength of the solitary wave. No significant differences were detected in the
change in the amplitude of the wave over the topographically tuned and non-tuned
cases, respectively. In addition, no evidence of significant resonant increase or decrease
of wave amplitude as a result of the encounter was measured for the topographically
tuned ridge, as compared with the reference, non-tuned ridge under otherwise identical
conditions.

7. Concluding remarks
Focus in this paper has been internal solitary waves of depression encountering

a submerged ridge. The solitary waves were generated in a two-layer system with a
thin upper layer and a relatively thicker lower fluid layer, each layer with a constant
density. The wave amplitudes of the generated solitary waves were in the range 0.2–1.9
times the depth of the upper layer, and the ratio between the lower and the upper
layer was in the range 3.0–8.5. Experiments were carried out in two different wave
tanks, one small and one larger. A total of four different ridges were used, with shapes
as indicated in figure 1 and table 1. The ridge slope was varied from 0.1 to 0.33 and
the maximum relative ridge height was two-thirds of the thicker fluid layer and three
times the thinner one. The ridge used in the long wave tank had the smallest slope.

Experiments were performed for (i) strong interaction between the wave and the
ridge, (ii) moderate interaction, (iii) weak interaction and (iv) no interaction (no
ridge present). Most attention was paid to the case of a strong interaction where the
incoming wave broke at the ridge. Breaking happened in the form of either spilling
or overturning in the tail of the wave. In the experiments with the wide ridge, a wave
of elevation was formed in the tail of the wave. Breaking was observed in the front
and also in the tail of the wave of elevation, the former taking place at an earlier
time than the latter. Such a breaking was not observed in the experiments with the
narrow ridges. In these cases a strong forward plunging breaker was observed.

In all the cases with breaking, vortices were shed on the upslope side of the ridge.
Tracer particles were transported vertically, from the top of the ridge, and relatively
high up into the fluid. A maximum level was the middle of the upper fluid layer. The
buoyancy anomaly became, in the breaking cases, up to about 25% of a theoretical
maximum, where all mechanical energy is lost in the breaking process.

Details of the local wave-induced flow at the ridge have been quantified and
visualized. A breaking condition was identified. Breaking was found to take place
when the fluid velocity in the lower layer exceeded 0.7 of a local nonlinear wave speed
at the top of the ridge (defined in equation (4.4)), i.e. somewhat less than critical flows
(see equation (4.5)). The occurrence of breaking was also determined in terms of the
amplitude of the incoming wave, the layer thickness ratio and the relative height of
the ridge, see equation (4.7). This means that wave breaking can be determined from
the input parameters of the experiment.

The transmitted waves were composed by a leading pulse and a dispersive wave-
train. The transmitted leading pulse was always identified as a solitary wave. It could
be significantly smaller than the incoming wave only when breaking took place at
the ridge (figure 18). Waves that did not break at the ridge were not reduced in
amplitude, practically speaking. The train of dispersive waves were all with small
wave slope (linear) and had periods significantly shorter than the leading pulse.



On the breaking of internal solitary waves at a ridge 187

Waves of mode 2 were also generated in runs with strong breaking at the ridge,
propagating along the pycnocline. An example is visualized in figure 17. The maximum
horizontal fluid velocity induced by the mode 2 wave was found to be up to 30% of
the maximum fluid velocity induced by the leading transmitted pulse.

The discussions with Professors D. H. Peregrine and O. M. Faltinsen are acknowl-
edged. The authors are grateful for the support of this work by the Research Council
of Norway (the Strategic University Programme ‘General Analysis of Realistic Ocean
Waves’) and the UK Engineering and Physical Science Research Council (EPSRC).
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